
CADP Twenty Years After

Hubert Garavel

INRIA Grenoble Rhône-Alpes / VASY team
http://www.inrialpes.fr/vasy

September 7, 2007

2

Luca Aceto quoting Christos Papadimitriou:

"Successful exploratory theoretical research is
bound to produce predominantly negative results"

In this talk, I will try to establish that:

"Successful application of concurrency theory
may produce predominantly positive results".

3

About CADP…

• CADP is the oldest software program
implementing concurrency theory results
that is still used and enhanced

• Development started in 1986
• First tool demonstration 20 years ago

(final review of European project "SEDOS",
Toulouse, October 1987)

4

CADP today
•A comprehensive toolbox

– 42 tools
– 17 software libraries

•4 computing platforms supported
– Sparc/Solaris, PC/Linux, PC/Windows, MacOS X

• International dissemination
– License agreements signed with 372 organizations
– Licenses granted for 822 machines in 2006
– 94 case-studies accomplished using CADP
– 29 research tools connected to CADP
– 28 university lectures based on CADP (since 2002)

5

Three main uses of CADP
•Design of critical systems:

– academic and industrial case-studies

•Teaching concurrency theory:
– practical feedback of process calculi, LTS,

behavioural equivalences, μ-calculus, etc.
– lab exercises

•Research in verification:
– new tools developed using CADP libraries
– new tools interfaced with CADP tools

6

Outline of the talk
1. A process calculus named LOTOS
2. Implementing process calculi efficiently
3. A modular architecture for explicit-state

verification
4. Equivalence checking
5. Model checking
6. End-user interfaces
7. Towards better languages
8. Concluding remarks

1. A process calculus named LOTOS

8

25 years ago: the OSI project
• A huge project in the networking community:

– replace old, proprietary protocols with new,
standardized protocols (the OSI stack)

– protocols are complex and involve concurrency
– OSI approach: a standard comes with a formal

description that will serve as a reference for all
implementations
≠ IETF approach: a proposed standard needs to be
supported by two implementations

• Different formalisms were competing:
– Estelle: extended finite state machines
– LOTOS: process calculus [ISO-1989]

9

The LOTOS project
• The LOTOS international standard (1983-1989)

– process part: clever synthesis of CCS, CSP, and Circal
– data part: abstract data types (the weakest point)
– formally-defined syntax and semantics
– large case-studies used to shape LOTOS features

• Key ideas behind LOTOS:
– process calculi are useful to describe industrial systems
⇒ they must evolve into computer languages

– emphasis on software tools
– critical mass (people, funding) required

10

Achievements and failures
• An ambitious research agenda for formal methods
• But technical issues:

– LOTOS was cleaner and more expressive than its competitors, but
harder to learn and to implement

– LOTOS tools did not scale to middle- or large-size problems
– Over-emphasis on refinement-based methodologies (disruptive,

long, and costly for industry)

• And political issues too:
– LOTOS did not become the unique modelling language:

competitors remained for some time: Estelle, SDL, RSL, etc.
other process algebras (ACP, CSP, CCS) continued their
independent life

– Formal methods had been oversold to industry and Europe

2. Implementing process calculi
efficiently

12

Implementing LOTOS: a real challenge
• Goal: translate a LOTOS program into its LTS

as defined by the formal semantics
• Sub-goal: the LTS should be as small as

possible (up to strong equivalence)
• A hot topic research in the late 80's:

– LOTOS was a very new kind of language
– its process part was not "imperative" (SOS rules)

and had "strange" features (n-party rendezvous
choice over value domains, disabling operator)

– its data part was "nasty" (ADTs, equational
semantics, semi-termination issues)

13

The (former) mainstream approaches
• Semantics-driven implementations:

– LTS obtained by "executing" the semantics of LOTOS
– processes handled by a term rewrite applying SOS rules

to derive successor states
– data types passed to an equational or rewrite engine
– LTS state = syntax tree derived from the LOTOS source

program

• Major drawbacks:
– memory intensive
– slow, and possibly non-terminating (semi-decidability)
– equality between states (i.e., loop detection) difficult

• Nowadays, these approaches are gone

14

The CADP approach

• Process part:
– avoid infinite recursion through parallel composition

(i.e., unbound process creation)
– avoid recursions through [> or >>, which generate

non-regular behaviours

• Data part:
– distinguish between constructors/non-constructors
– turn algebraic equations into rewrite rules
– provide means to interface user-given C code

Principle 1: Deviate from the LOTOS
standard when appropriate to restrict the
problem to practical cases only

15

The CADP approach

• Axioms (for data types) and SOS rules (for processes)
are only good to define semantics concisely and to
make proofs

• For efficient implementions, they are counter-
productive (they don't pay enough attention to the
underlying execution machinery)

• Instead, our goal was to:
– build a LOTOS compiler, not an interpreter
– use several translation steps, with intermediate models
– do things at compile-time rather than run-time

Principle 2: Elegant semantics and efficient
execution are two distinct issues

16

The CAESAR compiler (1989-now)

LOTOS
program

"symbolic"
Petri nets

control flow
and

data flow
optimizations

(static analysis)C code for
types+functions

LTS

[Garavel-1989]

17

Our intermediate model

T2 T3
H !not(X) K !X

G ?X:bitT1

G !X

reset X
T4

U1 U2

T5 tau

• Hierarchical Petri net
• Nested units featuring

sequential processes
• Visible, tau-, and

epsilon-transitions
• Typed variables with

a defined scope
• Statements attached

to transitions:
– assignments
– conditionals
– iterations
– variable resets

18

Which intermediate model?
• There are plenty of possible intermediate models in

our approach
• "Bad" intermediate models:

– do not support data ("pure" Petri net)
– do not support states/transitions (data structures only)
– do not support concurrency, e.g. A||B ("flat" EFSM)
– do not support nested processes, e.g. A.(B||C).D

• The CADP model for LOTOS was carefully designed
• "Enhanced" models exist:

- XFSM [Karjoth-1992]: dynamic creation of processes
- NTIF [Garavel-Lang-2002]: sequential code fragments

3. A modular architecture
for explicit-state verification

20

A separation principle
• In many model checkers, state space generation is often

intricated with verification
• CADP promotes a modular approach by separating clearly:

– the generation of the LTS (produced by the LOTOS compiler)
– the verification of the LTS (using visual, equivalence, or

model checking)

• Semantic reasons:
– concurrency theory promotes such an abstraction

(this is a key reason behind the LTS model)

• Pragmatic reasons (lasting from the 80's):
– compiling LOTOS was complex enough for a PhD thesis
– other colleagues in Grenoble were already working on model

checkers (Xesar) and equivalence checkers (Aldebaran)

21

A modular architecture with 3 levels
process
calculus

symbolic
model

control and data flow optimizations

LTS

• simulation and code generation
• verification:

— equivalence checking
— model checking
— visual checking

• testing
• performance evaluation, etc.

22

Explicit LTS: the BCG format
Two practical issues arising in the early 90's
• Interoperability:

– each bisimulation tool was equiped with its own LTS format
⇒ a pivot format was needed to allow conversions

• Disk space limitations:
– almost all LTS formats were textual (ASCII files)
– large LTSs could not be stored on hard disk
⇒ a compact format for LTS was needed

Design of BCG (Binary-Coded Graphs) [Garavel-1992]:
– binary file format for storing LTSs
– support for input/output streaming
– preservation of source-level information (types, functions…)
– specific compression techniques (≈ 2 bytes per transition)
⇒ BCG + BZIP2 is a highly compact way to store a huge LTS

23

Visual checking
Since BCG is a binary format, the need for
graph drawing tools was crucial:
– Development of BCG_DRAW and BCG_EDIT (1995)

– Connection of BCG to many other drawing tools:
AUTOGRAPH, GML, GraphViZ, VCG, VISCOPE

24

Implicit LTS : Open/Caesar
Another practical issue arising in the early 90's
How to combine:
• a separation betwen LTS generation and LTS verification
• and the need for "on-the-fly" verification?
Both were needed, but seemed incompatible at first sight

Solution: the Open/Caesar architecture [Garavel-1998]
• A programming interface to separate language-dependent

from language-independent aspects
• Many tools have been written above this interface:

simulation, testing, verification, etc.
• Other languages than LOTOS have been connected to this

interface
• An essential feature of CADP, often replicated in other

papers/tools

4. Equivalence checking

26

Practical uses of equivalence relations
• Equivalences introduced by Milner in CCS
• In practice, not used at the process calculi level,

but rather at the LTS level
• Two main usages:

LTS

minimization

lts

comparison

LTS 1 LTS 2

true | false
+ diagnostic

+ equivalence classes

27

Tools for equivalence checking
• Many equivalences: strong, branching, weak,

safety, trace, etc.
• Many algorithms: explicit, implicit, symbolic (BDDs)

• Successive tools in CADP:
– ALDEBARAN [Fernandez, Mounier, Kerbrat]
– BCG_MIN [Garavel, Hermanns, Cherif, Bergamini]
– BISIMULATOR [Mateescu, Bergamini]
– REDUCTOR [Mateescu, Lang]

• Connection to other tools:
– SCAN, AUTO, Fc2Tools, CWB, LTSMIN, …
– many bisimulation tools (but only a few still maintained)

28

Compositional verification
• A "divide and conquer" approach to avoid

state space explosion
• In an action-based setting: it relies on the

fact that many equivalences are congruences
for parallel composition

• Two variants:
– "simple" compositional verification

a.k.a. compositional reachability analysis
– "refined" compositional verification with

interfaces [Graf-Steffen-1990] [Krimm-Mounier-1997]

29

Compositional verification
• Fully supported in CADP:

– Exp.Open 2.0 [Lang, Garavel]
– Projector 2.0 [Pace, Ondet, Descoubes, Lang]
– SVL [Garavel-Lang-2001] [Lang-2002]

• A practical way to verify large systems:
so far, up to 70 concurrent processes ≈ 9.1064 states
[Tronel-Lang-Garavel-2003]

• Compositional verification is a very strong
reason to prefer process calculi (message
passing) rather than communicating state
machines (shared variables)

5. Model checking

31

"Standard" model-checking
• LTS model => "action-based" properties
• The information is in the transition labels

(rather than in the states)

logic formula

(regular alternation-free

modal μ-calculus)

on-the-fly solver
(CAESAR_SOLVE library)

result (true or false)
+ diagnostic (LTS)

program
under verification

(Open/Caesar)

Boolean equation system

Evaluator 3.5
model checker[Mateescu-2006]

32

Need for an extended LTS model
• In the standard LTS model:

– transition labels are actions belonging to an alphabet

• In practice, labels contain typed data
– Exemple: "SEND !23 !true"

• One often needs to handle these data
– SEND !X !true where F (X) < 15

⇒ Extended LTS model:
it handles structured labels
it exports the user-defined types/functions present in
the source program
this model is supported by the BCG format

33

Need for value-passing logic formulas
• Examples of value-passing properties:

– On every execution path, the value of x in all
occurrences of "SEND !x" is strictly increasing

– For each x, between all successive occurrences
of "OPEN !x" and "CLOSE !x" actions, there may
not be an "OPEN !y" action (critical section)

• First approach to define such a logic:
the RICO logic [Garavel-1989]

34

2nd approach: XTL
• For explicit LTSs (encoded in the BCG format)

• XTL (eXtended Temporal Logic):
[Mateescu-Garavel-1998]

– a functional framework for implementing model
checkers

– usual branching-time logics (CTL, HML…) can be
expressed in XTL

– value-passing extensions of these logics can also
be described

35

3rd approach: EVALUATOR 4.0
• For implicit LTSs (explored on-the-fly using

OpenCaesar)

• New concepts:
– Value-passing μ-calculus = modal μ-calculus with

typed variables, if-then-else, case, … statements
– Parameterized Boolean equation systems
– [Mateescu-1998a] [Mateescu-1998-b]

• Implementation:
– Evaluator 4 model checker (to be released soon)

36

Architecture of EVALUATOR 4.0
logic formula

(value-passing

μ-calculus)

on-the-fly solver
(CAESAR_SOLVE library)

result (true or false)
+ diagnostic (LTS)

program
under verification

(Open/Caesar)

Boolean equation system

parameterized Boolean
equation system

Evaluator 4.0
model checker

6. End-user interfaces

38

A key feature for industrial use

• Early verification tools only had simple
command-line interfaces, e.g.
– ad hoc command interpreters (QUASAR, CWB)
– LISP or Tcl/Tk commands (Meije, FcTools)

• More elaborate interfaces have been
developed for CADP

• Two lines of work:
– a graphical user interface (EUCALYPTUS)
– a scripting language for verification (SVL)

39

EUCALYPTUS graphical-user interface

• Version 1 (1994)
• Version 2 (1996-

now)
• Main features:

– file types
– user-friendly

contextual
menus

– support all the
CADP tools

40

SVL (Script Verification Language)
• Scripting language for

verification scenarios
[Garavel-Lang-2001]
[Lang-2002]

• Special constructs for:
– equivalence checking
– model checking
– compositional verification

• "Semantics-aware"

"F.exp" = leaf branching reduction of
hide G in

(
"spec.lotos":P1 [A, B, G]
|[G]|
"spec.lotos":P2 [C, G]
) ;

"D.seq" = deadlock of "F.exp";
"L.seq" = livelock of "F.exp";

an SVL script

7. Towards better languages

42

Enhancements to LOTOS
• 1993-2001: Standardization project at ISO to

enhance E-LOTOS

• Initial goal: a simple revision of LOTOS

• Final result: E-LOTOS [ISO-2001]
– complete rewrite of LOTOS
– abstract data types replaced by functional types
– process operators replaced by equivalent

functional / imperative constructs
– new features: time, exceptions, modules

43

E-LOTOS: A balanced result
•Positive aspects of E-LOTOS:

– better than LOTOS in most respects
– simpler syntax (away from the "algebraic" mania)
– formal semantics (timed LTS, SOS rules)
– industrial users seem to prefer E-LOTOS to LOTOS

•Negative aspects of E-LOTOS:
– semantics too complex, irregular at places
– lack of funding for E-LOTOS (perhaps because

LOTOS was oversold)
– never implemented entirely

44

On-going work at VASY
• LOTOS NT:

– a reasonable (untimed) subset of E-LOTOS
• TRAIAN (1996-now):

– a LOTOS NT → C compiler
– so far, only LOTOS NT data types are compiled
– intensively used to build VASY compilers

• LNT2LOTOS (2005-now):
– a LOTOS NT → LOTOS translator
– data types translation finished
– process translation being implemented
– already used successfully by Bull

8. Concluding remarks

46

Applied concurrency theory

• CADP is based on concurrency theory results

• Yet, its development was driven by practical
challenges:
– industrial needs observed in real-life case-studies
– limited computing resources (memory, disk space, CPU

time)
– limited human resources (manpower, project schedules…)
– software engineering guidelines (interfaces for work

division)

47

Innovation brought by CADP
• Innovation can arise from practical constraints:

– intermediate models for compiling process calculi
efficiently

– static analysis for state space reduction
– separation of state space generation and verification
– compression techniques for storing LTSs to disk
– value-passing μ-calculus
– parameterized Boolean Equation Systems
– end-user interfaces for verification
– enhanced languages acceptable by industry
– etc.

48

Dissemination of CADP ideas

• CADP is influential in the academic community:
– From the beginning, we made the right assumptions

and design choices
– Many case-studies and prototypes done using CADP
– Recent toolboxes using explicit-state verification

replicate the same architecture as CADP

• Industrial dissemination is in progress:
– CADP is being used for hardware design
– MULTIVAL project on multiprocessor architectures

(Bull, CEA/Leti, INRIA, ST Microelectronics)

49

A few references (1/3)
• [Garavel-1989]

Compilation et vérification de programmes LOTOS. PhD thesis,
Univ. Grenoble

• [Garavel-1992]
Binary-Coded Graphs. Technical Report, Grenoble

• [Garavel-1998]
OPEN/CAESAR: An Open Software Architecture for Verification,
Simulation, and Testing. Proc. TACAS'98, LNCS 1384

• [Garavel-Lang-2001]
SVL: A Scripting Language for Compositional Verification. Proc.
FORTE'2001, Kluwer Academic Publishers

• [Garavel-Lang-2002]
NTIF: A General Symbolic Model for Communicating Sequential
Processes with Data. Proc. FORTE'2002, LNCS 2529

• [Garavel-Lang-Mateescu-Serwe-2007]
CADP 2006: A Toolbox for the Construction and Analysis of Distributed
Processes. Proc CAV'2007, LNCS 4590

50

A few references (2/3)
• [Graf-Steffen-1990]

Compositional Minimization of Finite State Systems. Proc.
CAV'90, LNCS 531

• [ISO-1989]
LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. ISO/IEC International
Standard 8807:1989

• [Karjoth-1992]
Implementing LOTOS Specifications by Communicating State
Machines. Proc. CONCUR '92, LNCS 630

• [ISO-2001]
Enhancements to LOTOS (E-LOTOS). ISO/IEC International
Standard 15437:2001

• [Krimm-Mounier-1997]
Compositional State Space Generation from LOTOS Programs.
Proc. TACAS'97, LNCS 1217

• [Lang-2002]
Compositional Verification using SVL Scripts. Proc. TACAS'2002,
LNCS 2280

51

A few references (3/3)
• [Mateescu-1998-a]

Vérification des propriétés temporelles des programmes
parallèles. PhD thesis, INPG, Grenoble

• [Mateescu-1998-b]
Local Model-Checking of an Alternation-Free Value-Based Modal
Mu-Calculus. Proc. VMCAI'98

• [Mateescu-Garavel-1998]
XTL: A Meta-Language and Tool for Temporal Logic Model-
Checking. Proc. STTT'98 workshop (BRICS)

• [Mateescu-2006]
CAESAR_SOLVE: A Generic Library for On-the-Fly Resolution of
Alternation-Free Boolean Equation Systems. Springer Journal
STTT, 8(1)

• [Tronel-Lang-Garavel-2003]
Compositional Verification Using CADP of the ScalAgent
Deployment Protocol for Software Components. Proc.
FMOODS'2003, LNCS 2884

